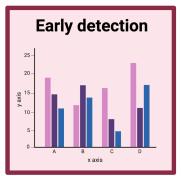
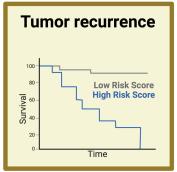
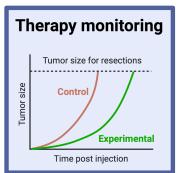
FROM LIQUID BIOPSY TO THE PATIENT: THERAPY MONITORING...

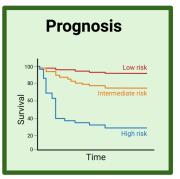
... IN PROGRESS OF LYMPHOMA

Filippo Maltoni

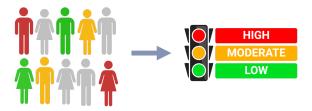

IRCCS Azienda Ospedaliero-Universitaria di Bologna Department of Medical and Surgical Sciences Institute of Hematology "L. and A. Seràgnoli" University of Bologna Bologna, Italy

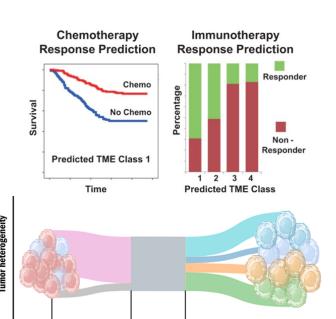



Disclosures of Filippo Maltoni


Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
None							

Liquid biopsy has emerged as a promising diagnostic and monitoring approach for the detection and characterization of cancers using bodily biofluids, such as blood

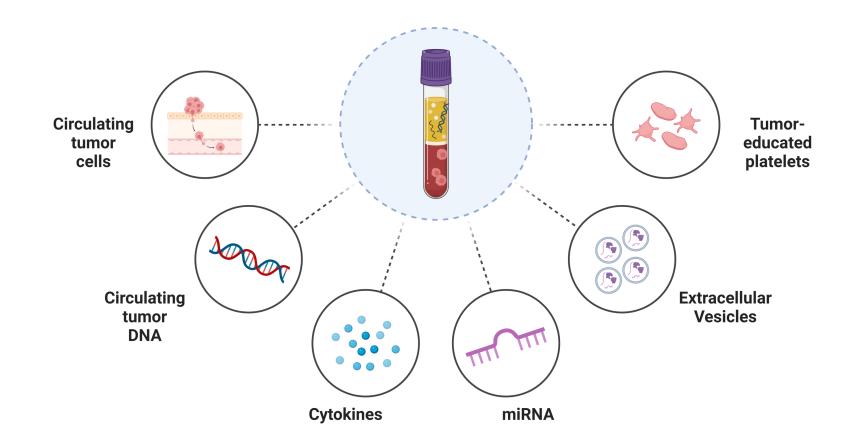



	Tissue biopsy	Liquid biopsy	Imaging/PET-CT	
Accessibility	Invasive	Minimally invasive	Non-invasive	
Sampling risk	Non-minimal, biopsy site dependent	Minimal	Minimal	
Data analysis	Days to weeks	Weeks to months	Hours to days	
Relative cost	Sampling: moderate Analysus: low	Sampling: low Analysis: high	Moderate	
Applications	Diagnosis and relapse detection	Diagnosis, response assesment, MRD monitoring and clonal evolution	Principal method for lymphoma staging and menagement, robust NPV for treatment response	
Limitations	Tumor heterogeneity, accessibility issues, low-quality material for molecular analyses	Lack of standardization, costly analytical methodologies	Weak PPV for clinical utility, radiation risk, not suitable for MRD, high false.positive rate (risk of overtreatment)	

Can we identify high-risk patients at presentation or during initial treatment?

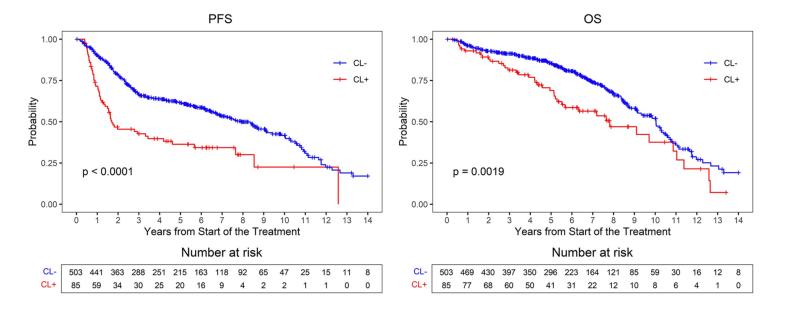
Can we improve patient selection and predict who will respond and who will not to a defined therapy?

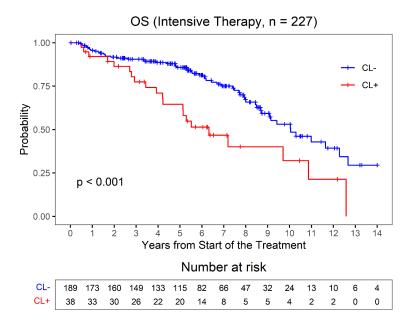
Can we monitor the dynamics of genomic alterations in lymphoma during therapy in order to predict therapy failure?



Remission

Relapse


THE ACTORS BEYOND LIQUID BIOPSY

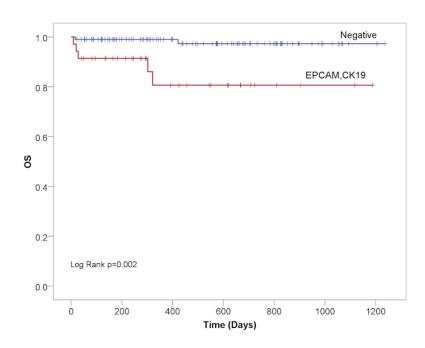

The "tumor circulome", defined as the subset of circulating components, is derived from cancer tissue and can be directly or indirectly used as a source of cancer biomarkers in liquid biopsies

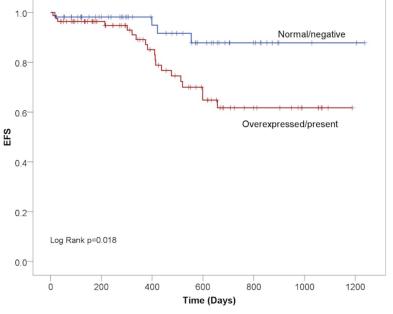
Journal of Hematology & Oncology (2025) 18:4
Impact of circulating lymphoma cells
at diagnosis on outcomes in patients
with newly diagnosed *de novo* diffuse large
B-cell lymphoma

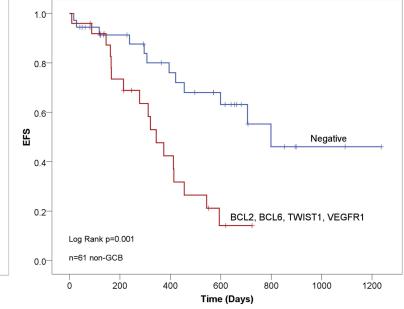
Sayan Mullick Chowdhury^{1†}, Subodh Bhatta^{1†}, Timothy J. Voorhees¹, Kaitlin Annunzio¹, David A. Bond¹, Yazeed Sawalha¹, Audrey Sigmund¹, Walter Hanel¹, Lalit Sehgal¹, Lapo Alinari¹, Robert Baiocchi¹, Kami Maddocks¹, Beth Christian¹, Dan Jones² and Narendranath Epperla^{1,3,4*}

The presence of circulating lymphoma cells (CL) at diagnosis was associated with inferior response rates and survival compared to those without CL

Median OS was significantly inferior among patients who received first-line intensive-induction chemotherapies in the CL+ vs CL- group

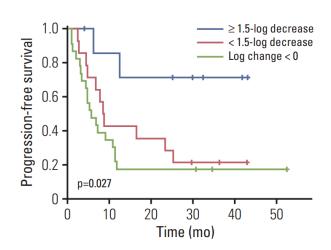

OncoTargets and Therapy 2022:15

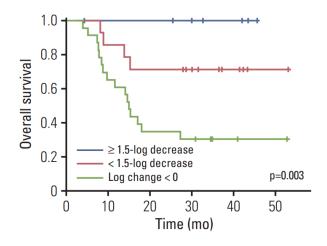

Overexpression of BCL2, BCL6, VEGFR I and TWIST I in Circulating Tumor Cells Derived from Patients with DLBCL Decreases Event-Free Survival

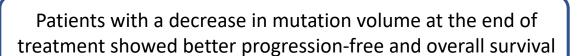

Rafael Cerón (1)^{1,2}, Adolfo Martínez (1)², Christian Ramos (1)³, Adrián De la Cruz (1)², Anel García (1)², Iveth Mendoza (1)², Goujon Palmeros², Efreen Horacio Montaño Figueroa (1)³, Juan Navarrete (1)⁴, Silvia Jiménez-Morales (1)⁵, Carlos Martinez-Murillo (1)³, Irma Olarte (1)²

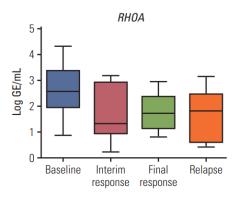
Patients with the presence of EpCAM+ or CK19+ CTCs presented worse OS and EFS

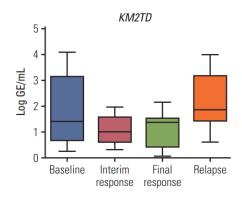
The overexpression of the BCL2, BCL6, TWIST1 and VEGFR1 genes confers a poor EFS

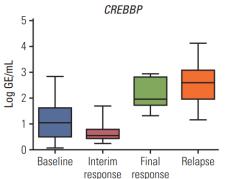


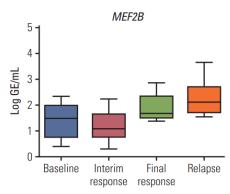


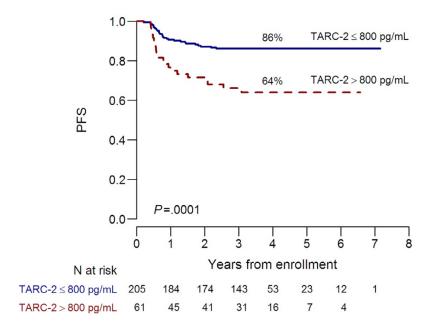

Cancer Res Treat. 2023;55(1):291-303


Circulating Tumor DNA–Based Genotyping and Monitoring for Predicting Disease Relapses of Patients with Peripheral T-Cell Lymphomas

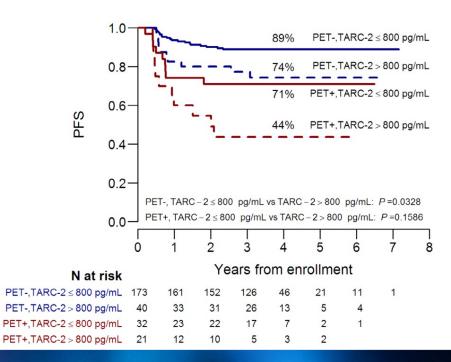

Seok Jin Kim¹², Yeon Jeong Kim³, Sang Eun Yoon¹, Kyung Ju Ryu², Bon Park², Donghyun Park⁴, Duck Cho⁵, Hyun-Young Kim⁵, Junhun Cho⁶, Young Hyeh Ko⁶, Woong-Yang Park²³, Won Seog Kim¹²





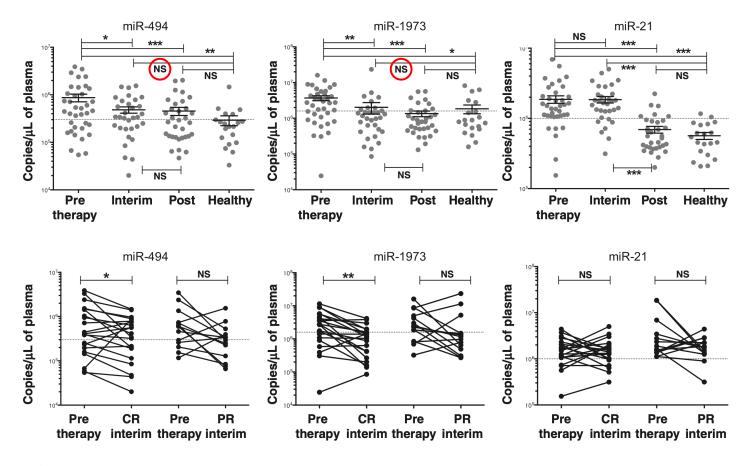


ctDNA mutation profiles showed increased mutation volumes in KMT2D, CREBBP, and MEF2B at the time of relapse.


Hematological Oncology. 2020;38:501-508.

Early serum TARC reduction predicts prognosis in advanced-stage Hodgkin lymphoma patients treated with a PET-adapted strategy

Simonetta Viviani¹ | Arabella Mazzocchi² | Chiara Pavoni³ |
Francesca Taverna² | Andrea Rossi³ | Caterina Patti⁴ | Alessandra Romano⁵ |
Livio Trentin⁶ | Roberto Sorasio⁷ | Anna Guidetti¹ | Daniela Gottardi⁸ |
Corrado Tarella^{9,10} | Michele Cimminiello¹¹ | Roberta Zanotti¹² | Lucia Farina¹ |
Andrés José Maria Ferreri¹³ | Marina Galbiati² | Paolo Corradini¹ |
Alessandro Massimo Gianni¹ | Andrea Gallamini⁷ | Alessandro Rambaldi^{3,14}


TARC serum levels above the cut-off value of 800 pg/mL after completion of the second ABVD cycle (TARC-2) were associated with a high probability of treatment failure, even within the subgroup of patients with negative PET-2 results

Clin Cancer Res; 20(1) January 1, 2014

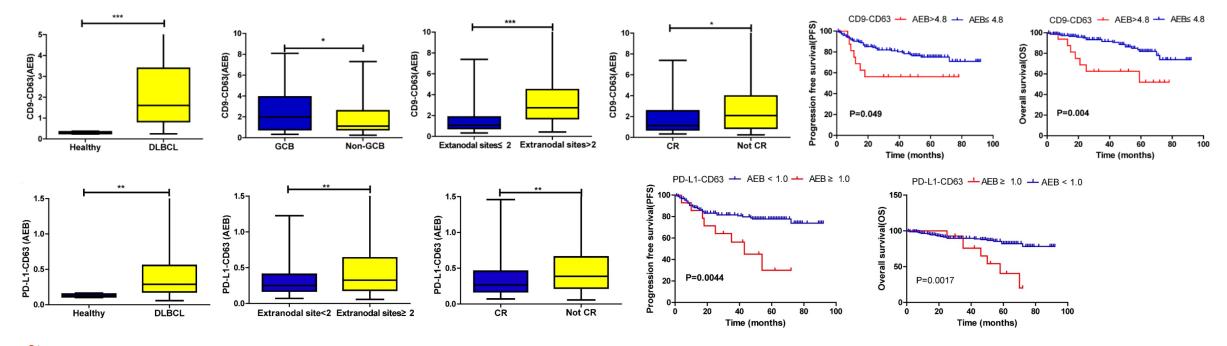
Plasma MicroRNA Are Disease Response Biomarkers in Classical Hodgkin Lymphoma

Kimberley Jones^{1,2}, Jamie P. Nourse¹, Colm Keane^{1,3,4}, Atul Bhatnagar¹, and Maher K. Gandhi^{1,2,3}

In patients who achieved complete remission by 6 months post-therapy, both miR494 and miR-1973 drop to levels equivalent with healthy controls by the interim time point.

miR-21 interim therapy levels remain equivalent to pre-therapy and elevated compared with healthy controls, dropping to normal levels by 6 months post-therapy

ONCOIMMUNOLOGY

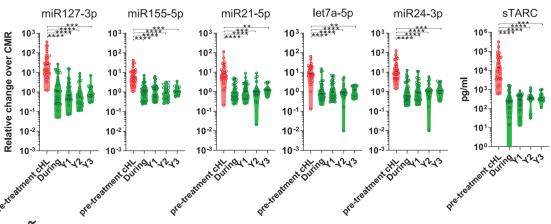

2021, VOL. 10, NO. 1, e1995166

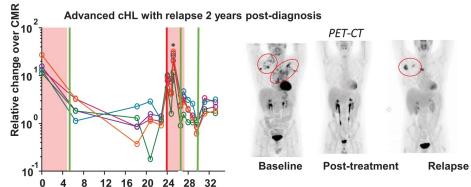
Universal extracellular vesicles and PD-L1+ extracellular vesicles detected by single molecule array technology as circulating biomarkers for diffuse large B cell lymphoma

Ji-Wei Li^{a,b,c,*}, Di Shi^{a,b,c,*}, Xiao-Chun Wan^{a,b,c}, Jue Hu^{a,b,c}, Yi-Fan Su^{a,b,c}, Yu-Peng Zeng^{a,b,c}, Zi-Juan Hu^{a,b,c}, Bao-Hua Yu^{a,b,c}, Qun-Ling Zhang^{b,d}, Ping Wei^{a,b,c}, and Xiao-Yan Zhou^{a,b,c}

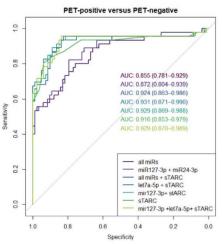
Elevated total and PD-L1+ EVs were

- abundant in the plasma of DLBCL patients
- associated with specific clinical features
- prognostic factors for both progression-free and overall survival

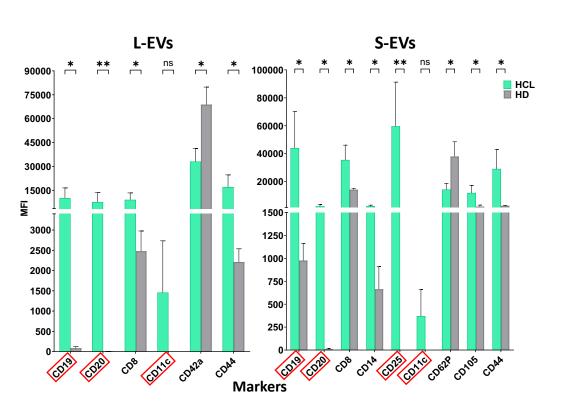




I Extracell Vesicles. 2021;10:e12121.

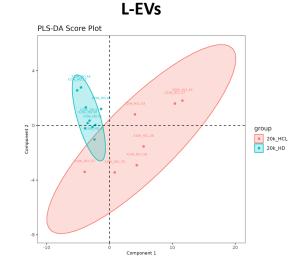

Extracellular vesicle miRNA predict FDG-PET status in patients with classical Hodgkin Lymphoma

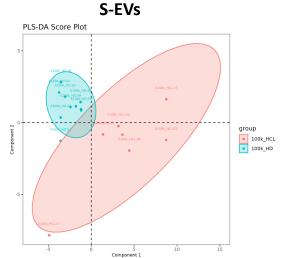
Biomarkers included	AUC (CI)	Optimization cut-off	Sens. (%)	Spec. (%)	NPV (%)	PPV (%)
5 miRNAs	0.855 (0.781 –	Youden-index	80.0	75.6	87.3	64.3
	0.929)	Closest top left	80.0	75.6	87.3	64.3
miR127-3p +	0.872 (0.804-	Youden-index	82.2	79.3	89.0	68.5
miR24-3p	0.939)	Closest top left	82.2	79.3	89.0	68.5
5 miRNAs +	0.924 (0.863-	Youden-index	95.5	82.5	97.1	75.0
sTARC	0.986)	Closest top left	95.5	82.5	97.1	75.0
let7a-	0.931 (0.871 –	Youden-index	93.5	83.8	95.7	76.8
5p + sTARC	0.990)	Closest top left	87.0	88.8	92.2	81.6
miR127-	0.929 (0.869 –	Youden-index	93.5	85.0	95.8	78.2
3p + sTARC	0.988)	Closest top left	89.1	88.8	93.4	82.0
sTARC	0.916 (0.853 –	Youden-index	80.4	93.8	89.3	88.1
	0.979)	Closest top left	84.8	87.5	90.9	79.6
miR127-3p +	0.929 (0.870 –	Youden-index	95.6	83.8	97.1	77.2
let7a-5p+ sTARC	0.989)	Closest top left	93.5	85.0	95.8	78.2

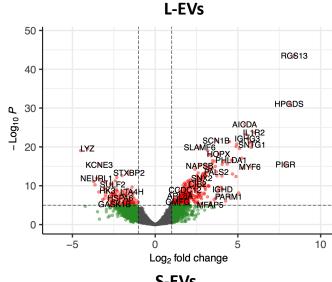


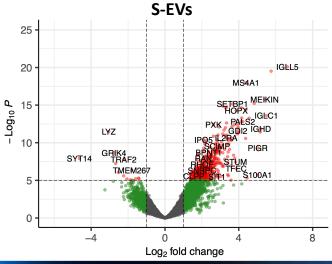
EV-miRNA levels correlate with the presence of PET detectable disease lesions during treatment.

EV-miRNAs of complete responders decrease early during treatment and remain stable in post-treatment follow up unless a relapse occurs.


Combining EV-miR-127-3p and/or EV-let7a-5p levels with serum TARC increases the accuracy for predicting PET-status.


Flow cytometric analysis of EV surface signature


(Unpublished data)


Lipidomic analysis

mRNA sequencing analysis

CLINICAL IMPLICATIONS:

- Robust validation through expanded patient cohorts, considering potential variations across lymphoma subtypes and stages.
- The exact contribution and clinical utility of **integrative approaches** (proteomics, transcriptomics, and epigenomics).
- Exploration of **optimal timing, frequency, and specific clinical contexts** for its application.
- Understanding how liquid biopsy data can effectively inform treatment decisions compared to traditional imaging modalities.

FUTURE PERSPECTIVES:

- Tumor-educated platelets
- **cfDNA fragmentation patterns**: ctDNA fragment lengths of lymphoma patients may vary in each individual with a correlation with disease stage. Moreover, the fragmentation patterns were able to predict outcomes in DLBCL (Meriranta *et al.* Blood 2022).
- **Epigenetic features**: abnormal tumor-specific DNA methylation patterns detected in cfDNA are associated with poor outcomes in DLBCL (Wedge *et al.* Am J Hematol 2017).

Liquid biopsy techniques have shown significant promise as a **non-invasive alternative** to traditional tissue biopsies for lymphoma **diagnosis**, **therapy monitoring**, **relapse detection**, **and outcome prediction**.

The **real-time monitoring** of treatment and **timely adjustments** to treatment plans based on identifiable characteristics will provide enhanced benefits to patients.

The **combination** of liquid biopsy approaches **with PET/CT scans** at interim timepoints may further improve outcome prediction and treatment tailoring during therapy.

In-depth research examining the tumor circulome will also help clarify the pathogenesis of lymphomas and promote the development of new therapeutic strategies.

Ghazal Narimanfar **Dorian Forte** Martina Barone **Lucia Catani**

Simone Tiberi

Roberto Maria Pellegrino Carla Emiliani

Giulia Gabrielli Lisa Argnani Alessandro Broccoli

Pier Luigi Zinzani

